Social component key to link between happiness & religiosity


According to the study, 33 percent of people who attend religious services every week and have three to five close friends in their congregation report that they are “extremely satisfied” with their lives. “Extremely satisfied” is defined as a 10 on a scale ranging from 1 to 10.

In comparison, only 19 percent of people who attend religious services weekly, but who have no close friends in their congregation report that they are extremely satisfied. On the other hand, 23 percent of people who attend religious services only several times a year, but who have three to five close friends in their congregation are extremely satisfied with their lives. (via.)


Copy number variations (CNV) in depression


A large genetic study of people with major depression has found that a duplicated region of DNA on chromosome 5 predisposes people to the disorder. The gene involved plays an important role in the development of nerve cells, adding to evidence that disruptions in neurotransmission networks form a biological basis for depression. [...]

[This study] is the first large-scale genome-wide study of copy number variation (CNV) in major depressive disorder (MDD), a major psychiatric and behavioral disorder affecting an estimated 16 percent of the U.S. population. [...]

Hakonarson’s group conducted a whole-genome scan of DNA from 1,693 patients with MDD, mainly from a European database, and from 4,506 control subjects.

The researchers identified 12 CNVs exclusive to MDD cases. Their most notable finding was a large duplication of DNA segments on chromosome 5q35.1, a CNV shared by five unrelated patients and not observed in healthy controls. Residing at that location is the gene SLIT3, which is involved in axon development. The axon is the portion of a neuron that carries nerve impulses away from the cell body. (via.)

Original source: “Duplication of the SLIT3 Locus on 5q35.1 Predisposes to Major Depressive Disorder,” PLoS One, published online Dec. 1, 2010.


Anabolic steroids, depression, BDNF & morning corticosterone levels


Abuse of anabolic androgenic steroids (AASs) is frequently associated with changes in mood, including depression. [...] We used male adult rats injected for 4 weeks with either nandrolone or stanozolol at daily doses (5 mg/kg, s.c.) that are considered equivalent to those abused by humans [...] AAS treatment reduced levels of brain-derived neurotrophic factor in the hippocampus and prefrontal cortex, reduced the expression of low-affinity glucocorticoid receptors in the hippocampus, and increased morning trough basal plasma corticosterone levels. All these changes have been related to the pathophysiology of major depressive disorder. Accordingly, rats treated with nandrolone or stanozolol showed an increased immobility time in the forced swim test, which is widely used for the screening of antidepressant drugs. All effects produced by AASs were prevented by co-administration with the classical antidepressant, chlorimipramine. (via.)


“Exhaustion Syndrome” & Depression


Certain personality traits heighten susceptibility to psychiatric disorders. Therefore a research team at Umeå University wanted to study whether this patient group had any susceptibility factors that could explain the development of their disorder. The patient group is distinguished by being anxious and pessimistic, with a weak sense of self, which is common in many psychiatric disorders. What was special about this group was that they stood out as persistent, ambitious, and pedantic individuals.

Being ambitious, fastidious, and overachieving also appears to make a person more prone to exhaustion syndrome. According to Agneta Sandström’s dissertation, individuals with exhaustion syndrome demonstrate impaired memory and attention capacity as well as reduced brain activity in parts of the frontal lobes. Regulation of the stress hormone cortisol is also impacted in the group, with altered sensitivity in the hypothalamic-pituitary-adrenal axis (HPA axis). [...]

The HPA axis in the patient group shows reduced sensitivity in the pituitary, with less secretion of adrenocorticotropic hormone (ACTH) following stimulation with corticotropin (CRH), as well as heightened sensitivity in the adrenal cortex, with increased release of cortisol in relation to the amount of ACTH secreted. There is also a difference in the diurnal rhythm of cortisol, with the patients presenting a flatter secretion curve than the other two groups. The researchers could not detect any reduction in the volume of the hippocampus in the patient group. The proportion of individuals with measurable levels of the pro-inflammatory cytokine interleukin 1 is higher in the patient group. (via.)


Robert Sapolsky’s 52 minute Lecture on Depression


This is one of the best videos I’ve ever seen on the physiological roots of depression. This guy (Robert Sapolsky) really goes in-depth and connects the dots between scientific facts and common philosophy & anecdote. 52 minutes — not for the faint of heart.


p11 & depression


Reversing depression

Michael Kaplitt, a neurosurgeon at Weill Cornell Medical College in New York, whose lab develops gene therapies for brain disorders, teamed up with Greengard and other colleagues in the new study.

The idea was “to identify the areas of the brain in which p11 is particularly important, in order to find targets” for new therapies for depression, says Kaplitt.

The researchers first used a technique called RNA interference, which turns genes off, to block the expression of p11 in two mouse brain areas linked to depression. When they delivered the blocker to one of these areas, known as the nucleus accumbens, the treated animals struggled less than controls when held by the tail, and also swam less actively than controls when released into a container of water — two tests routinely used used to determine whether antidepressants are working in animal models.

Next, they injected a viral vector carrying the p11 gene directly into the nucleus accumbens of the mutant mice lacking the gene. The p11 boost in this brain area was enough to undo the mutants’ usual depression-like symptoms.

Finally, the researchers turned to humans, and compared postmortem brains of 17 individuals who had depression during their lives, with those of individuals who had not. The nucleus accumbens of people with depression had much lower levels of p11 than that of their non-depressed counterparts.

The findings suggest, says Kaplitt, “that if we can reverse that low level of p11 in this area of the brain we can reduce depressive symptoms”. (via.)


Creativity, Depression, and DHEAS (a hormone that “blunts the effects of cortisol”)


Well, it turns out the cliché might be true after all: Angst has creative perks. That, at least, is the conclusion of Modupe Akinola, a professor at Columbia Business School, in her paper “The Dark Side of Creativity: Biological Vulnerability and Negative Emotions Lead to Greater Artistic Creativity.” The experiment was simple: She asked subjects to give a short speech about their dream job. The students were randomly assigned to either a positive or negative feedback condition, in which their speech was greeted with smiles and vertical nods (positive) or frowns and horizontal shakes (negative). After the speech was over, the subjects were given glue, paper and colored felt and told to create a collage using the materials. Professional artists then evaluated each collage for creativity.

In addition, Akinola also measured DHEAS (dehydroepiandrosterone), an endogenous hormone that blunts the effects of stress hormones like cortisol. (As I’ve written about before, depression is closely entangled with chronic stress.) Given this chemical power, it’s not surprising that low levels of DHEAS have been associated with susceptibility to volatile mood swings and downward spirals of sadness. Finally, subjects were also asked to self-report their moods, giving the scientists a subjective and objective measurement of how they were feeling, and how the feedback to the speech had shifted their emotional state.

Not surprisingly, positive feedback cheered us up: Participants who received smiles and nods during their speeches reported feeling better than before. Negative feedback had the opposite effect – it’s no fun having our dreams trampled on.

Here’s where things get interesting: People who received negative feedback created better collages, at least when compared to those who received positive feedback or no feedback at all. Furthermore, those with low baselines of DHEAS proved particularly vulnerable to the external effects of frowns, so that they proved to be the most creative of all. (via.)

Other interesting DHEAS tidbits:


Anterior cingulate cortex, religion, atheism, and more.


With two experiments, the researchers showed that when people think about religion and God, their brains respond differently—in a way that lets them take setbacks in stride and react with less distress to anxiety-provoking mistakes. Participants either wrote about religion or did a scrambled word task that included religion and God-related words. Then the researchers recorded their brain activity as they completed a computerized task—one that was chosen because it has a high rate of errors. The results showed that when people were primed to think about religion and God, either consciously or unconsciously, brain activity decreases in areas consistent with the anterior cingulate cortex (ACC), an area associated with a number of things, including regulating bodily states of arousal and serving an alerting function when things are going wrong, including when we make mistakes.

Interestingly, atheists reacted differently; when they were unconsciously primed with God-related ideas, their ACC increased its activity. The researchers suggest that for religious people, thinking about God may provide a way of ordering the world and explaining apparently random events and thus reduce their feelings of distress. In contrast, for atheists, thoughts of God may contradict the meaning systems they embrace and thus cause them more distress. (via.)

More on the anterior cingulate cortex, and in this case, specifically religious extremism:

Across all studies, anxious conditions caused participants to become more eagerly engaged in their ideals and extreme in their religious convictions. In one study, mulling over a personal dilemma caused a general surge toward more idealistic personal goals. In another, struggling with a confusing mathematical passage caused a spike in radical religious extremes. In yet another, reflecting on relationship uncertainties caused the same religious zeal reaction.

Researchers found that religious zeal reactions were most pronounced among participants with bold personalities (defined as having high self-esteem and being action-oriented, eager and tenacious), who were already vulnerable to anxiety, and felt most hopeless about their daily goals in life.

A basic motivational process called Reactive Approach Motivation (RAM) is responsible, according to lead researcher Ian McGregor, Associate Professor in York’s Department of Psychology, Faculty of Health. “Approach motivation is a tenacious state in which people become ‘locked and loaded’ on whatever goal or ideal they are promoting. They feel powerful, and thoughts and feelings related to other issues recede,” he says.

“RAM is usually an adaptive goal regulation process that can re-orient people toward alternative avenues for effective goal pursuit when they hit a snag. Our research shows that humans can sometimes co-opt RAM for short term relief from anxiety, however. By simply promoting ideals and convictions in their own minds, people can activate approach motivation, narrow their motivational focus away from anxious problems, and feel serene as a result,” says McGregor. [...]

Findings published last year in the journal Psychological Science by the same authors and collaborators at the University of Toronto found that strong religious beliefs are associated with low activity in the anterior cingulate cortex, the part of the brain that becomes active in anxious predicaments.

“Taken together, the results of this research program suggest that bold but vulnerable people gravitate to idealistic and religious extremes for relief from anxiety,” McGregor says. (via.)

Interestingly, according to Wikipedia (egads! check your sources, man!) the ACC also plays a role in empathy:

A large number of experiments using functional MRI, electroencephalography (EEG) and magnetoencephalography (MEG) have shown that certain brain regions (in particular the anterior insula, anterior cingulate cortex, and inferior frontal cortex) are active when a person experiences an emotion (disgust, happiness, pain, etc.) and when he or she sees another person experiencing an emotion.

There’s also this…

At the functional level, roles played by this region in communication include social bonding in mammals, control of vocalization in humans, semantic and syntactic processing, and initiation of speech. The involvement of the anterior cingulate cortex in social cognition is suggested where, for infants, joint attention skills are considered both prerequisites of social cognition and prelinguistic communication acts.

A few more tidbits on the ACC from Wikipedia:

The anterior cingulate cortex can be divided anatomically based on cognitive (dorsal), and emotional (ventral) components. The dorsal part of the ACC is connected with the prefrontal cortex and parietal cortex as well as the motor system and the frontal eye fields making it a central station for processing top-down and bottom-up stimuli and assigning appropriate control to other areas in the brain. By contrast, the ventral part of the ACC is connected with amygdala, nucleus accumbens, hypothalamus, and anterior insula, and is involved in assessing the salience of emotion and motivational information. The ACC seems to be especially involved when effort is needed to carry out a task such as in early learning and problem-solving. Many studies attribute functions such as error detection, anticipation of tasks, motivation, and modulation of emotional responses to the ACC. Rehearsing a task that originally produced spontaneous, novel responses to the point of producing rigid, stereotypic responses results in a diminished ACC response. [...]

Because the ACC is intricately involved with error detection and affective responses, it may very well be that this area forms the bases of self-confidence. [..] Whenever the dorsal area was active, fewer errors were committed providing more evidence that the ACC is involved with effortful performance. The second finding showed that, during error trials, the ACC activated later than for correct responses, clearly indicating a kind of evaluative function.[...]

There is evidence that damage to ACC is present in patients with schizophrenia, where studies have shown patients have difficulty in dealing with conflicting spatial locations in a Stroop-like task and having abnormal ERNs. Participants with ADHD were found to have reduced activation in the dorsal area of the ACC when performing the Stroop task. [...] There is evidence that this area may have a role in obsessive–compulsive disorder due to the fact that what appears to be an unnaturally low level of glutamate activity in this region has been observed in patients with the disorder, in strange contrast to many other brain regions that are thought to have excessive glutamate activity in OCD. Recent meta-analyses of voxel-based morphometry studies comparing people with OCD and healthy controls has found people with OCD to have [...] decreased grey matter volumes in bilateral dorsal medial frontal/anterior cingulate cortex.

Helen S. Mayberg and two collaborators described how they cured 4 of 6 depressed people — individuals virtually catatonic with depression despite years of talk therapy, drugs, even shock therapy — with pacemakerlike electrodes in area 25 (the anterior cingulate cortex). A decade earlier, Mayberg had identified area 25 as a key conduit of neural traffic between the “thinking” frontal cortex and the phylogenetically older central limbic region that gives rise to emotion. She subsequently found that area 25 appeared overactive in these depressed people — “like a gate left open,” as she puts it — allowing negative emotions to overwhelm thinking and mood. Inserting the electrodes closed this gate and rapidly alleviated the depression of two-thirds of the trial’s patients.[...]

Greater ACC activation levels were present in more emotionally-aware female participants when shown short ‘emotional’ video clips. Better emotional awareness is associated with improved recognition of emotional cues or targets, which is reflected by ACC activation.

From the Brodmann Area 25 (ventral ACC) Wikipedia article which should probably be merged into the “anterior cingulate cortex” page:

This region is extremely rich in serotonin transporters and is considered as a governor for a vast network involving areas like hypothalamus and brain stem, which influences changes in appetite and sleep; the amygdala and insula, which affect the mood and anxiety; the hippocampus, which plays an important role in memory formation; and some parts of the frontal cortex responsible for self-esteem.

One study has noted that BA25 is metabolically overactive in treatment-resistant depression and has found that chronic deep brain stimulation in the white matter adjacent to the area is a successful treatment for some patients. A different study found that metabolic hyperactivity in this area is associated with poor therapeutic response of persons with Major Depressive Disorder to cognitive-behavioral therapy and venlafaxine.


High income and its effects on “life evaluation” versus day-to-day happiness


Recent research has begun to distinguish two aspects of subjective well-being. Emotional well-being refers to the emotional quality of an individual’s everyday experience—the frequency and intensity of experiences of joy, stress, sadness, anger, and affection that make one’s life pleasant or unpleasant. Life evaluation refers to the thoughts that people have about their life when they think about it. We raise the question of whether money buys happiness, separately for these two aspects of well-being. We report an analysis of more than 450,000 responses to the Gallup-Healthways Well-Being Index, a daily survey of 1,000 US residents conducted by the Gallup Organization. We find that emotional well-being (measured by questions about emotional experiences yesterday) and life evaluation (measured by Cantril’s Self-Anchoring Scale) have different correlates. Income and education are more closely related to life evaluation, but health, care giving, loneliness, and smoking are relatively stronger predictors of daily emotions. When plotted against log income, life evaluation rises steadily. Emotional well-being also rises with log income, but there is no further progress beyond an annual income of ~$75,000. Low income exacerbates the emotional pain associated with such misfortunes as divorce, ill health, and being alone. We conclude that high income buys life satisfaction but not happiness, and that low income is associated both with low life evaluation and low emotional well-being.

via.