Atypical Brain Functioning in Siblings of Autistics


Relative to the other groups, there was reduced activity in specific brain regions in children with ASD when they were watching biological motion compared with scrambled motion.

These included the right amygdala and the ventromedial prefrontal cortex, areas which other research has identified as having changed activity in adults with ASD.

The researchers found additional brain regions that showed reduced activity in both the siblings group and the ASD group, relative to the typically developing group.

They interpreted this result as a reflection of the underlying genetic vulnerability that the siblings group might have to ASD.

The scientists also found what they called “compensatory activity” in the siblings group – brain regions that were working harder than normal and might be helping the children overcome their increased genetic risk of ASD.

These included the right posterior temporal sulcus and the ventromedial prefrontal cortex, which have been implicated in social perception and social cognition. [...]

“More controversially, the authors also propose that other brain regions are under-responsive to biological motion in siblings of children with autism, as well as in those with autism.”

“Yet other regions are reported to be overactive in the siblings, and this is interpreted as compensatory activity.
“Since these siblings had no subclinical symptoms of autism, and were selected to have no other relatives with any autistic features, they are unlikely to constitute a group with strong genetic risk for autism, and so this aspect of the results is puzzling and it would be important to replicate it in another sample.” (via.)

It’s interesting that while autistics show below normal activation in the ventromedial prefrontal cortex, that their siblings showed above normal activation in the same region while viewing “biological motion.”

It’ll be interesting to see what mysteries of the human mind will be revealed as the diagnostic criteria for what exactly defines the autistic spectrum becomes more refined. Supposedly these autistic children didn’t have any other relatives showing symptoms of autism, however, wouldn’t it be interesting to find out whether their relatives show this same abnormal overactivation in said regions.


Orchid: S-allele “Depression-Risk Gene” and Potential Cognitive/Social Benefits


The reclamation of the “depression gene” proceeds apace: In a paper titled “Looking on the Bright Side of Serotonin Transporter Gene Variation,” two researchers who helped establish the “depression risk-gene” view of depression assert quite strongly that the genetic variant in question — the s-allele of the serotonin transporter gene, HTTLPR — possess greater social sensitivity than people without this variant, and have some significant cognitive advantages as well. (via.)


Stria Terminalis & Vasopressin


The stria terminalis is critical for the creation of vasopressin, and interestingly enough differs by gender. Men apparently have a larger one, producing more vasopressin (generally speaking). I ran across a reference to the stria terminalis in Susan Kuchinskas’ book The Chemistry of Connection, and decided I’d take a look around for some more info.

I ran across this interesting tidbit on Wikipedia:

The stria terminalis also appears to be indicated in gender identification. Male-to-female transsexuals have been found to have female-normative cell proliferation in the central subdivision of the bed nucleus of the stria terminalis (BSTc), whereas a female-to-male transsexual was found to have male-normative BSTc cell proliferation.[1][2] It is thought this is mediated by diminished and excessive androgen levels respectively in utero and neonatally.

One other thing I ran across that was interesting:

  • Loss or inhibition of a protein known as ASIC1a (acid sensing ion channel) common to the amygdala and bed nucleus of the stria terminalis leads to fearless behavior in mice. (via.)

Caffeine increasing susceptibility to persuasion?


Before the attempt to change their minds, half the participants were given moderate doses of caffeine, while the other half took a placebo. Both groups were double-blinded so that neither the researchers nor the participants knew who had taken what. Then they were given six stories to read which argued against euthanasia.

When asked afterwards for their attitude to voluntary euthanasia, those who had drunk caffeine were more influenced by the persuasive message than those who’d had the placebo.

On top of this, participants were asked about their attitude towards abortion which, the experimenters guessed, would be indirectly influenced, since someone who disapproves of euthanasia is also likely to disapprove of abortion. And this is exactly what they found. The persuasive message had spread to a related idea and the effect was strongest amongst those who had consumed caffeine.

Read more of the original article to find out the “why”…


Ventral Pallidum: Long-term Relationships, Monogamy, Oxytocin & More


I’m reading Susan Kuchinskas’ book The Chemistry of Connection, which despite having a pink cover with cute bunnies on it is not even remotely gender biased — she’s got a real strong focus on the actual scientific literature, and stacks of citations.. which is fantastic! At times she tries to “translate” the research into laymens terms, but then takes it back around to the technical. So far I’m very satisfied with it.

However, that’s entirely beside the point! Today’s blog post is actually, about the ventral pallidum, which she mentions on page 89.

I’ll quote the sentence that enticed this blog post:

Helen Fisher thinks that the same variations in vasopressin and oxytocin activity in the brain’s reward center and in the ventral pallidum, a structure that’s more active in long-term relationships, could also account for differences in “partner preference,” the early stage of courtship in which we identify that special someone we hope to make our own (Fisher, Aron, and Brown 2006).”

So, as I often do when I read something interesting about a brain region I’m unfamiliar with, I decided to peruse Eurekalert… Here’s a few of the goodies I found:

  • Rat’s ventral pallidum is activated more by sugar water than salt water, unless they’re salt deprived… under which circumstances the ventral pallidum is activated just as strongly as with sugar water. (via.)
  • “Scientists at Emory University have been able to increase bonding behavior in monogamous male prairie voles by transferring a receptor gene for the neuropeptide arginine vasopressin (AVP) into a particular region of the brain (the ventral pallidum).” [...] “Scientists previously have demonstrated that monogamy in voles, including the formation of pair bonds, is enhanced by vasopressin and that an antagonist for the vasopressin receptor can prevent the formation of pair bonding. Scientists also know that the distribution of the vasopressin receptor within certain regions of the brain is dramatically different between monogamous and non-monogamous species of voles. All monogamous vole species, even though they may be unrelated, have denser vasopressin receptor binding in the ventral pallidal region of the brain than do non-monogamous vole species.”(via.)
  • “[They] examined the distribution of two brain receptors in the ventral forebrain of monogamous prairie voles that have been previously tied to pair bond formation: oxytocin (OTR) and vasopressin V1a receptor (V1aR). Using receptor audiographic techniques, the scientists found that these receptors are confined to two of the brain’s reward centers, the nucleus accumbens and the ventral pallidum. V1aR receptors, which are thought to be activated in the male vole brain during pair bond formation, were confined largely to the ventral pallidum. OTR receptors, which play a crucial role in pair bond formation in females, were found mainly in the nucleus accumbens.” (via.)
  • “In the February 21 issue of the journal Science, the team will report that a small variation in the gene that encodes the enzyme called catechol-O-methyl transferase, or COMT, made a significant difference in the pain tolerance, and pain-related emotions and feelings, of healthy volunteers.”[...] The COMT protein is a sort of brain janitor, “cleaning up” the spaces between brain cells after chemicals called neurotransmitters finish sending signals between brain cells. Specifically, COMT metabolizes, or breaks down, the brain chemicals called dopamine and noradrenaline, also known as norepinephrine. Those with two copies of the val form of the gene make only powerful COMT that mops up dopamine rapidly. People with two copies of the met form of the gene make only poor COMT, and can’t “clean up” the dopamine in their brains very well. Those with one copy of each gene variety — the majority of people — make some of each kind of COMT, yielding a “normal” dopamine-metabolizing system. [...] And animal studies have shown that when the dopamine system is highly active, the brain reduces its production of other chemicals: the endogenous opioids, or so-called enkephalins. [...] Zubieta and his colleagues set out to see whether a person’s COMT genotype made a difference in their pain perception. They thought that perhaps those who metabolized dopamine very well because they had two val COMT genes would also be able to activate the brain’s painkilling system better than those with two copies of the met form of COMT. The results fit the predicted effect of COMT gene variation perfectly. Participants who had two copies of the met gene form could stand less of the painful injection than those with two copies of the val form of the gene, and their brains’ mu-opioid systems were less activated in many areas of the brain. [...] The differences between met/met and val/val participants in the activation of the mu-opioid system were most significant in the cingulate cortex, anterior thalamus, the thalamic pulvinar, and the basal ganglia, including the nucleus accumbens and ventral pallidum, and the amygdala. (via.)
  • “Our findings show that the brain areas activated when someone looks at a photo of their beloved only partially overlap with the brain regions associated with sexual arousal. Sex and romantic love involve quite different brain systems.” [...] Aron reported that, using functional magnetic resonance imaging (fMRI) and other measurements, he and his colleagues found support for their two major predictions: (1) early stage, intense romantic love is associated with subcortical reward regions rich with dopamine; and (2) romantic love engages brain systems associated with motivation to acquire a reward. [...] “Our data even may be relevant to some forms of autism,” Brown added. “Some people with autism don’t understand or experience any sort of emotional attachment or romantic love. I would speculate that autism involves an atypical development of the midbrain and basal ganglia reward systems.” [...] Another breakthrough, Brown noted, was that “we found several brain areas where the strength of neural activity changed with the length of the romance. Everyone knows that relationships are dynamic over time, but we are beginning to track what happens in the brain as a love relationship matures.” [...] Helen E. Fisher, a research anthropologist at Rutgers University, New Jersey, noted that not only did the brain change as romantic love endured, but that some of these changes were in regions associated with pair-bonding in prairie voles. The fMRI images showed more activity in the ventral pallidum portion of the basal ganglia in people with longer romantic relationships. (via.)
  • Disconnection studies have revealed that serial connections between basolateral amygdala, anterior cingulate cortex, nucleus accumbens, and ventral pallidum are involved in the exertion of effort and effort-related choice behavior (Floresco and Ghods-Sharifi, 2007; Farrar et al., 2008; Mingote et al., 2008; Hauber and Sommer, 2009). (via.)

Whew! I… may have broke a sweat. Anyhoo… This “ventral pallidum” area may be worth a google alert, I think.

Oh, before I forget… Make sure to check out Susan Kuchinskas’ websites:


Close Friends Light up Medial Prefrontal Cortex more than Strangers


The research subjects’ brain regions responded more to questions regarding their close friends than they did to strangers with similar interests. The experiments attempt to show that social closeness is used more than similarity of beliefs when evaluating others in some tasks relying on the medial prefrontal cortex region of the brain. (via.)


Anterior cingulate cortex, religion, atheism, and more.


With two experiments, the researchers showed that when people think about religion and God, their brains respond differently—in a way that lets them take setbacks in stride and react with less distress to anxiety-provoking mistakes. Participants either wrote about religion or did a scrambled word task that included religion and God-related words. Then the researchers recorded their brain activity as they completed a computerized task—one that was chosen because it has a high rate of errors. The results showed that when people were primed to think about religion and God, either consciously or unconsciously, brain activity decreases in areas consistent with the anterior cingulate cortex (ACC), an area associated with a number of things, including regulating bodily states of arousal and serving an alerting function when things are going wrong, including when we make mistakes.

Interestingly, atheists reacted differently; when they were unconsciously primed with God-related ideas, their ACC increased its activity. The researchers suggest that for religious people, thinking about God may provide a way of ordering the world and explaining apparently random events and thus reduce their feelings of distress. In contrast, for atheists, thoughts of God may contradict the meaning systems they embrace and thus cause them more distress. (via.)

More on the anterior cingulate cortex, and in this case, specifically religious extremism:

Across all studies, anxious conditions caused participants to become more eagerly engaged in their ideals and extreme in their religious convictions. In one study, mulling over a personal dilemma caused a general surge toward more idealistic personal goals. In another, struggling with a confusing mathematical passage caused a spike in radical religious extremes. In yet another, reflecting on relationship uncertainties caused the same religious zeal reaction.

Researchers found that religious zeal reactions were most pronounced among participants with bold personalities (defined as having high self-esteem and being action-oriented, eager and tenacious), who were already vulnerable to anxiety, and felt most hopeless about their daily goals in life.

A basic motivational process called Reactive Approach Motivation (RAM) is responsible, according to lead researcher Ian McGregor, Associate Professor in York’s Department of Psychology, Faculty of Health. “Approach motivation is a tenacious state in which people become ‘locked and loaded’ on whatever goal or ideal they are promoting. They feel powerful, and thoughts and feelings related to other issues recede,” he says.

“RAM is usually an adaptive goal regulation process that can re-orient people toward alternative avenues for effective goal pursuit when they hit a snag. Our research shows that humans can sometimes co-opt RAM for short term relief from anxiety, however. By simply promoting ideals and convictions in their own minds, people can activate approach motivation, narrow their motivational focus away from anxious problems, and feel serene as a result,” says McGregor. [...]

Findings published last year in the journal Psychological Science by the same authors and collaborators at the University of Toronto found that strong religious beliefs are associated with low activity in the anterior cingulate cortex, the part of the brain that becomes active in anxious predicaments.

“Taken together, the results of this research program suggest that bold but vulnerable people gravitate to idealistic and religious extremes for relief from anxiety,” McGregor says. (via.)

Interestingly, according to Wikipedia (egads! check your sources, man!) the ACC also plays a role in empathy:

A large number of experiments using functional MRI, electroencephalography (EEG) and magnetoencephalography (MEG) have shown that certain brain regions (in particular the anterior insula, anterior cingulate cortex, and inferior frontal cortex) are active when a person experiences an emotion (disgust, happiness, pain, etc.) and when he or she sees another person experiencing an emotion.

There’s also this…

At the functional level, roles played by this region in communication include social bonding in mammals, control of vocalization in humans, semantic and syntactic processing, and initiation of speech. The involvement of the anterior cingulate cortex in social cognition is suggested where, for infants, joint attention skills are considered both prerequisites of social cognition and prelinguistic communication acts.

A few more tidbits on the ACC from Wikipedia:

The anterior cingulate cortex can be divided anatomically based on cognitive (dorsal), and emotional (ventral) components. The dorsal part of the ACC is connected with the prefrontal cortex and parietal cortex as well as the motor system and the frontal eye fields making it a central station for processing top-down and bottom-up stimuli and assigning appropriate control to other areas in the brain. By contrast, the ventral part of the ACC is connected with amygdala, nucleus accumbens, hypothalamus, and anterior insula, and is involved in assessing the salience of emotion and motivational information. The ACC seems to be especially involved when effort is needed to carry out a task such as in early learning and problem-solving. Many studies attribute functions such as error detection, anticipation of tasks, motivation, and modulation of emotional responses to the ACC. Rehearsing a task that originally produced spontaneous, novel responses to the point of producing rigid, stereotypic responses results in a diminished ACC response. [...]

Because the ACC is intricately involved with error detection and affective responses, it may very well be that this area forms the bases of self-confidence. [..] Whenever the dorsal area was active, fewer errors were committed providing more evidence that the ACC is involved with effortful performance. The second finding showed that, during error trials, the ACC activated later than for correct responses, clearly indicating a kind of evaluative function.[...]

There is evidence that damage to ACC is present in patients with schizophrenia, where studies have shown patients have difficulty in dealing with conflicting spatial locations in a Stroop-like task and having abnormal ERNs. Participants with ADHD were found to have reduced activation in the dorsal area of the ACC when performing the Stroop task. [...] There is evidence that this area may have a role in obsessive–compulsive disorder due to the fact that what appears to be an unnaturally low level of glutamate activity in this region has been observed in patients with the disorder, in strange contrast to many other brain regions that are thought to have excessive glutamate activity in OCD. Recent meta-analyses of voxel-based morphometry studies comparing people with OCD and healthy controls has found people with OCD to have [...] decreased grey matter volumes in bilateral dorsal medial frontal/anterior cingulate cortex.

Helen S. Mayberg and two collaborators described how they cured 4 of 6 depressed people — individuals virtually catatonic with depression despite years of talk therapy, drugs, even shock therapy — with pacemakerlike electrodes in area 25 (the anterior cingulate cortex). A decade earlier, Mayberg had identified area 25 as a key conduit of neural traffic between the “thinking” frontal cortex and the phylogenetically older central limbic region that gives rise to emotion. She subsequently found that area 25 appeared overactive in these depressed people — “like a gate left open,” as she puts it — allowing negative emotions to overwhelm thinking and mood. Inserting the electrodes closed this gate and rapidly alleviated the depression of two-thirds of the trial’s patients.[...]

Greater ACC activation levels were present in more emotionally-aware female participants when shown short ‘emotional’ video clips. Better emotional awareness is associated with improved recognition of emotional cues or targets, which is reflected by ACC activation.

From the Brodmann Area 25 (ventral ACC) Wikipedia article which should probably be merged into the “anterior cingulate cortex” page:

This region is extremely rich in serotonin transporters and is considered as a governor for a vast network involving areas like hypothalamus and brain stem, which influences changes in appetite and sleep; the amygdala and insula, which affect the mood and anxiety; the hippocampus, which plays an important role in memory formation; and some parts of the frontal cortex responsible for self-esteem.

One study has noted that BA25 is metabolically overactive in treatment-resistant depression and has found that chronic deep brain stimulation in the white matter adjacent to the area is a successful treatment for some patients. A different study found that metabolic hyperactivity in this area is associated with poor therapeutic response of persons with Major Depressive Disorder to cognitive-behavioral therapy and venlafaxine.


Overcome Feelings of Helplessness On Your Own


New research at the University of Haifa found that laboratory rats that were on their own when exposed to uncontrollable conditions, which create a feeling of helplessness, learned to avoid situations which create such feelings better than rats that were exposed to uncontrollable conditions in pairs.The way laboratory rats react to uncontrollable situations in which their behaviors have no influence on subsequent events has been researched in the past. Results show that rats that are exposed to a situation in which they are powerless, for example, electric shocks that they can’t possibly avoid, have a more difficult time learning how to avoid them in the future than rats that were never exposed to situations of helplessness – a phenomenon known as “learned helplessness”. Researchers choose to experiment with rats because they are know as social animals and their brains work much the same way as human brains. However, most of the research done until now was done on rats exposed to uncontrollable conditions when they are alone.

In his doctoral dissertation, Dr. Qutaiba Agbaria, under the supervision of Dr. Richard Shuster, examined the differences in learned helplessness among rats that were exposed to uncontrollable conditions alone and in pairs. The researcher began with the hypothesis that rats would learn to be more adaptable in social situations, or in pairs, however, the research results revealed a very different picture. Rats that were exposed to uncontrollable conditions in pairs coped less well when they were no longer in uncontrollable situations than rats that were exposed to these situations alone.

The next phase of the research examined the influence of a rat that had never been exposed to an uncontrollable situation on a rat that had. These pairs of rats showed greater adaptability than pairs that had been exposed to helplessness as individuals or in pairs. In addition, the researchers did not find outstanding differences between the learning ability of these pairs of rats – where one had been exposed to uncontrollable conditions and the other hadn’t – and pairs that were never exposed to uncontrollable conditions, which means that the effect of “learned helplessness” is effectively erased. “Now that we have see that “learned helplessness” can be “unlearned”, we should continue to examine whether this change is a result of exposure to a rat that was not exposed to helplessness or rather that the social behavior between the two animals has another meaning,” said Dr. Agbaria. (Source: Eurekalert)

This whole experiment struck me as absolutely fascinating. For me, if I were to apply this to a human scenario (which may or may not reflect this in reality)… it basically says that if you’re trying to learn a new intimidating skill then it’s best to go at it alone, unless the person coming with you is already a veteran. In other words, learning something new and intimidating is never benefited by having an extra person that is intimidated by the same thing.